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Abstract

We propose a numerical method for a topology optimisation of com-
posite elastic metamaterial slabs. We aim to realise some anomalous func-
tionalities such as perfect absorption, wave-mode conversion, and negative
refraction by designing the shape and topology of (visco-) elastic inclu-
sions. Instead of manipulating effective material constants, we propose
to utilise the far-field characteristics of scattered waves. This allows us
to achieve novel functionalities for waves in not only low but also high-
frequency ranges. The design sensitivity corresponding to the far-field
characteristics is rigorously derived using the adjoint variable method and
incorporated into a level-set-based topology optimisation algorithm. The
design sensitivity is computed by the boundary element method with pe-
riodic Green’s function instead of the standard finite element method to
rigorously deal with the radiation of scattered waves without absorbing
boundaries. We show some numerical examples to demonstrate the effec-
tiveness of the proposed method.
Keywords Topology optimisation, Elastic metamaterial, Boundary ele-
ment method, Periodic scattering, Topological derivative

1 Introduction

It is well known that electromagnetic waves exhibit extraordinary behaviours
when they propagate through artificially designed periodic structures, such as
electromagnetic metamaterials [1], metasurfaces [2], and photonic crystals [3].
Similar phenomena can be observed when elastic waves propagate in a medium
whose mass density and elastic moduli are periodically arranged. For example,
the elastic counterparts of the electromagnetic metamaterials are called elastic
metamaterials [4], where an elastic wave behaves as if the medium has negative
elastic moduli and/or a negative mass density.

As with the electromagnetic metamaterials, elastic metamaterials potentially
possess unique functionalities that can help realise innovative wave devices. For
example, negative material constants induce elastic wave cloaking [5, 6] and su-
perlensing effects [7]. The locally resonant metamaterials [8] are another type
of interesting material, which exhibit extremely low frequency band gaps. Fur-
thermore, recent works have found that perfect mode conversion, which converts
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an incident P-wave into S-waves or vice versa, is possible when the structure is
designed carefully [9]. These anomalous properties can be beneficial in further
improving vibration control and non-destructive testing technologies.

Topology optimisation is one of the most sophisticated tools for designing
structures with desirable features and has been applied in various fields of sci-
ence and engineering. Recent works have proposed some topology optimisation
methods for manipulating elastic waves. After Sigmund and Jensen [10] designed
phononic crystals with large bandgaps by using a topology optimisation based
on a density-based method [11], many works have been devoted to maximising
phononic bandgaps [12, 13, 14]. Jensen [15] studied the reflection and dissipa-
tion of elastic waves from periodic scatterers and optimised them to transmit
or dissipate an incident wave within a target frequency range. Christiansen
and Sigmund [16] utilised a topology optimisation to manipulate a scattering
profile in an observation area and realised negative refraction using a metama-
terial slab. Noguchi et al. [17], Yang and Kim [18], and Matsushima et al.
[19] designed metasurfaces and metamaterial slabs exhibiting mode conversion
in elastic systems. Dong et al. [20, 21, 22] proposed topology optimisations for
designing elastic and acoustic metamaterials with broadband double-negative
material constants. More comprehensive investigations on topology optimisa-
tion of phononic crystals and acoustic/elastic metamaterials were conducted by
[23, 24].

These studies, however, aim to manipulate the indirect physical quantities
such as bandgaps, effective material properties, and displacement distribution
in a fixed observation domain. The effective parameters accurately describe
wave propagation within the homogenised material only when the frequency is
sufficiently low. The bandgap structures provide only a little information on the
characteristics of waves propagating through a structure of finite thickness. In
addition, introducing the observation domain produces an ambiguity regarding
the manner the domain should be determined, which may adversely affect the
performance of topology optimisation.

Recently, the authors proposed a new objective functional for topology opti-
misation that designs single-phase elastic metamaterial slabs [19]. Our objective
functional was formulated by using the so-called far-field characteristics of elas-
tic waves. Assuming spatial periodicity, we observed that scattered waves are
expressed as a superposition of some plane waves. Then it turned out that
their amplitudes are exactly written as a boundary integral of displacement and
traction along the surface of a single scatterer. This implies that the boundary
integral contains sufficient information for describing periodic scattering.

This study is an extension of our previous work [19]; herein, we aim to
establish the topology optimisation of two-phase composite elastic metamaterial
slabs. Achieving this objective allows us to not only improve design flexibility
but also realise novel metamaterials that cannot be achieved by a single material,
including an elastic wave absorber consisting of an elastic-viscoelastic composite
material.

To this end, we aim to derive and compute a design sensitivity correspond-
ing to our objective functional. Following our previous work [19], we employ a
level-set-based algorithm [25, 26], which uses a topological derivative [27] as the
design sensitivity. The topological derivative, however, cannot be derived in a
standard manner (e.g. [28]) because our objective functional explicitly depends
on the topology of scatterers. We suggest an alternative approach to rigor-
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Figure 1: Model of the elastic metamaterial slab. The host matrix consists of
lossless elastic material, where the inclusions may be viscoelastic. The inclusions
are periodically allocated along the x1-direction and can exist in a finite strip
|x2| < H/2, where H > 0 represents a thickness of the slab

ously derive the topological derivative using a reciprocal theorem. To compute
the topological derivative, we use the boundary element method (BEM) with
periodic Green’s function [19] instead of the standard finite element method,
because BEM can rigorously deal with the radiation of scattered waves without
absorbing boundaries such as the perfectly matched layer.

This paper is organised as follows. We first describe the model of elastic
metamaterial slabs to be optimised and formulate periodic scattering in Section
2. Then, we explain our topology optimisation algorithm and derive the topo-
logical derivative in Section 3. In Section 4, using some numerical examples,
we demonstrate that our topology optimisation can design elastic metamate-
rial slabs that exhibit perfect absorption, wave-mode conversion, and negative
refraction. Finally, we conclude our study in Section 5.

2 Formulation

2.1 Elastic wave scattering by periodic inclusions

We consider a linear, isotropic, and homogeneous elastic matrix and (visco-
) elastic inclusions characterised by the mass densities ρ and ρ′, and Lamé’s
constants (λ, µ) and (λ′, µ′), respectively. The host matrix and inclusions are
assumed to be under a plane-strain state and subject to a time-harmonic oscil-
lation. The time dependence of the oscillation is chosen as e−iωt, where ω > 0
is the angular frequency, t denotes time, and i is the imaginary unit. When the
inclusions exhibit viscosity, there exists a phase lag δ ∈ [0, π] between the stress
and strain. This can be expressed by letting λ′ and µ′ be complex numbers, so
that arg λ′ = arg µ′ = −δ.

As shown in Fig. 1, we consider elastic wave scattering in a singly-periodic
domain, where the inclusions are arranged periodically in the host matrix along
the x1 direction. We define a unit cell U as U = (−L/2, L/2) × R with the
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spatial period L > 0. In the unit cell U , the host matrix, inclusions, and their
boundary are denoted by Ω, Ω′ = U \ Ω, and Γ, respectively.

When a plane incident wave uin propagates through the host matrix, the
total displacement u and stress σ are governed by the following Navier-Cauchy
equations:

σji,j(x) + ρω2ui(x) = 0 x ∈ Ω, (1)

σji,j(x) + ρ′ω2ui(x) = 0 x ∈ Ω′. (2)

We assume that u and traction t defined by the unit vector n outward normal
to Ω (inward normal to Ω′) are continuous on Γ, i.e.

ui(x) := ui|+(x) = ui|−(x) x ∈ Γ, (3)

ti(x) := σji|+(x)nj(x) = σji|−(x)nj(x) x ∈ Γ. (4)

Here, we used the Einstein summation convention, and g|+ and g|− are the
traces of a function g defined by

g|±(x) = lim
h↓0

g(x± hn(x)) x ∈ Γ. (5)

The same convention and notation are used throughout the paper. Since uin is
a plane wave, uin has a quasi-periodicity along the x1 direction, i.e. there exists
a constant β ∈ (−π, π] such that

uini (x+ Le1) = uini (x)eiβ , (6)

where (e1, e2) are the basis vectors of the Cartesian coordinate system (x1, x2).
The total displacement u then satisfies the following quasi-periodic boundary
conditions on the left periodic boundary Γp = {x | x1 = −L/2, x2 ∈ R}:

ui(x+ Le1) = ui(x)e
iβ , (7)

ui,1(x+ Le1) = ui,1(x)e
iβ . (8)

In summary, the displacement u is the solution of the following boundary value
problem (BVP):

σji,j(x) + ρω2ui(x) = 0 x ∈ Ω, (9)

σji,j(x) + ρ′ω2ui(x) = 0 x ∈ Ω′, (10)

ui(x) = ui|+(x) = ui|−(x) x ∈ Γ, (11)

ti(x) = σji|+(x)nj(x) = σji|−(x)nj(x) x ∈ Γ, (12)

ui(x+ Le1) = ui(x)e
iβ x ∈ Γp, (13)

ui,1(x+ Le1) = ui,1(x)e
iβ x ∈ Γp, (14)

Outgoing radiation condition for

ui(x)− uini (x) as x2 → ±∞. (15)
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2.2 Far-field characteristics

As is known, the solution u of the periodic scattering problem (9)–(15) admits
the following plane-wave expansion:

ui(x) =

{
uini (x) + usc,+i (x) x ∈ U+

uini (x) + usc,−i (x) x ∈ U− , (16)

usc,±i (x) =

∞∑
m=−∞

AL±,mdL±,m
i eikLx·pL±,m

+

∞∑
m=−∞

AT±,mdT±,m
i eikTx·pT±,m

, (17)

where U+ = {x ∈ U | x2 > maxy∈Ω′ y2} and U− = {x ∈ U | x2 < miny∈Ω′ y2}.
Here “L” and “T” represent the longitudinal and transverse waves, respectively,
and “±” represents the directions of the plane waves (+: upward, −: down-
ward). For each index m, called (scattering) channel, the vector pL±,m denotes
the direction of a plane P-wave, which is explicitly written as

pL±,m =
1

kL

(
ξm

±
√
k2L − ξ2m

)
, (18)

where ξm = (β+2mπ)/L. Throughout the paper, we recognise C ∋ z 7→
√
z by

the principal value
√
z =

√
|z|ei 12Arg z, where Arg : C → (−π, π] is the principal

argument, so that the plane waves do not diverge when radiating into infinity.
The direction of motion of the plane P-wave, denoted by dL±,m, is equal to
pL±,m. Similarly, the transverse counterparts pT±,m and dT±,m are expressed
by

pT±,m =
1

kT

(
ξm

±
√
k2T − ξ2m

)
, (19)

dT±,m =
1

kT

(
±
√
k2T − ξ2m
−ξm

)
. (20)

In what follows, we refer to the plane wave dL+,meikLp
L+,m·x (resp. dL−,meikLp

L−,m·x)
in (17) as an upward (resp. downward) mth plane P-wave. Similarly we use the
term “an upward/downward mth plane S-wave.”

Computing the amplitudes AL±,m and AT±,m is the key point of our work.
After performing a boundary element analysis, we can compute AL±,m and
AT±,m using the following boundary integrals (see Appendix A):

AL±,m =
i

2L(λ+ 2µ)
√
k2L − ξ2m

∫
Γ

[
dL±,m
i σji(x)

+ikL

(
λδij + 2µpL±,m

i pL±,m
j

)
ui(x)

]
×nj(x)e−ikLx·pL±,m

dΓ, (21)

AT±,m =
i

2Lµ
√
k2T − ξ2m

∫
Γ

[
dT±,m
i σji(x)

+ikTµ
(
pT±,m
i dT±,m

j + dT±,m
i pT±,m

j

)
ui(x)

]
×nj(x)e−ikTx·pT±,m

dΓ, (22)
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where δij is the Kronecker delta. Note that the displacement fields in U+ and U−

are completely determined from the plane-wave expansion (17) and boundary
integrals of the solution (21) and (22). Moreover, the plane wave expansion (17)
includes the propagating modes and evanescent modes, the latter of which can
be neglected in far fields owing to their exponential decay. We therefore define
the index sets IL = {m ∈ Z | k2L − ξ2m > 0} and IT = {m ∈ Z | k2T − ξ2m > 0},
so that the scattered waves usc,± are approximated in the far fields as

usc,±(x) ≃
∑
m∈IL

AL±,mdL±,m
i eikLx·pL±,m

+
∑
m∈IT

AT±,mdT±,m
i eikTx·pT±,m

as |x2| → ∞. (23)

This representation of far-field behaviour allows us to define reflectance and
transmittance in a natural manner. From (17) and the orthogonality of the
exponential function, it can be seen that the time-averaged energy E± per unit
cell radiating when x2 tends to the infinities ±∞ equals the sum of the energy
carried by the propagating plane waves, i.e.

E± =
ωL

2

∑
m∈IL

∣∣AL±,m
∣∣2 (λ+ 2µ)

√
k2L − ξ2m

+
ωL

2

∑
m∈IT

∣∣AT±,m
∣∣2 µ√k2T − ξ2m. (24)

In addition, if the system has viscosity, i.e. Im [λ′] < 0 and Im [µ′] < 0, then
the time-averaged amount of energy loss per unit cell is

Eloss =
ω

2
Im

[∫
Γ

σij(x)uj(x)ni(x)dΓ

]
≥ 0. (25)

According to the energy conservation law, the time-averaged incident energy
Ein per unit cell should be equal to the sum of E+, E−, and Eloss. Therefore,
if the incident wave propagates upwards, then we define the transmittance T of
an incident wave by T = E+/Ein and reflectance R by R = E−/Ein; otherwise
T = E−/Ein and R = E+/Ein.

3 Topology optimisation

3.1 Objective functional

Our objective is to design the shape and topology of an elastic metamaterial
slab that achieves some novel functionalities. As mentioned in Section 2.2, some
important properties including the energy balance and far-field behaviour are
given by the boundary integrals of the form∫

Γ

(
ϕij(x)ui(x) + ψi(x)σij(x)

)
nj(x)dΓ, (26)

where ϕ and ψ are differentiable symmetric-tensor- and vector-valued functions,
respectively. Here we focus on the objective functionals of this form (26) and
derive a corresponding design sensitivity.
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3.2 Level-set based algorithm for topology optimisation

In this study, we adopt a level-set-based algorithm for our topology optimisation.
Our algorithm essentially follows the method proposed by Amstutz and Andrä
[25] and assumes that a level set function ϕ defined in a bounded and fixed
design domain D is governed by

∂ϕ

∂t
(x, t) = T (x, t)− (T , ϕ)L2(D)ϕ(x, t), (27)

where T is the topological derivative of an objective functional (discussed in the
next subsection), and (·, ·)L2(D) is the L

2 inner product in D defined by

(f, g)L2(D) =

∫
D

f(x)g(x)dΩ. (28)

The equation (27) guarantees that the obtained design satisfies an optimality
condition in terms of a topological perturbation once ϕ converges [29]. However,
this method cannot control the complexity of a designed structure, which is
essential for engineering applications. Thus, we employ an approach that uses
B-spline basis functions for interpolating ϕ and T in space [26]. This allows us
to limit the ratio of the perimeter and area of the structure by changing the
number or degree of the B-spline basis functions.

3.3 Topological derivative

As mentioned in the previous subsection, we consider complex-valued function-
als of the form

f(u(Ω),σ(Ω),ϕ,ψ; Γ)

=

∫
Γ

(
ϕij(x)ui(x) + ψi(x)σij(x)

)
nj(x)dΓ. (29)

Here we assume that ϕ and ψ are independent of Ω for simplicity. We note that
removing this assumption is trivial.

Let (u(Ω),σ(Ω)) be the solution of the BVP (9)–(15) and assume that f
can be expanded as

f(u(Ω \ Ωε),σ(Ω \ Ωε),ϕ,ψ; ∂(Ω \ Ωε))

= f(u(Ω),σ(Ω),ϕ,ψ; Γ) + v(ε)T (x0) + o(v(ε))

x0 ∈ Ω, (30)

f(u(Ω ∪ Ωε),σ(Ω ∪ Ωε),ϕ,ψ; Γ ∪ ∂Ωε)

= f(u(Ω),σ(Ω),ϕ,ψ; Γ) + v(ε)T (x0) + o(v(ε))

x0 ∈ Ω′, (31)

where v is a monotonically decreasing function which vanishes when ε tends to
zero, and Ωε = Bε(x

0) is a disk of radius ε > 0 centred at x0. The function T
is called a topological derivative [27].

Here we focus on the case of x0 ∈ Ω because the other case can be treated in
a similar manner. We define δu = u(Ω\Ωε)−u(Ω) and δσ = σ(Ω\Ωε)−σ(Ω)
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and omit the argument of u(Ω) and σ(Ω) for ease of notation. Then we can
write

δf =f(u(Ω \ Ωε),σ(Ω \ Ωε),ϕ,ψ; ∂(Ω \ Ωε))

− f(u(Ω),σ(Ω),ϕ,ψ; Γ)

=f(u+ δu,σ + δσ,ϕ,ψ; Γ ∪ ∂Ωε)

− f(u,σ,ϕ,ψ; Γ)

=f(u,σ,ϕ,ψ; ∂Ωε) + f(δu, δσ,ϕ,ψ; Γ)

+ f(δu, δσ,ϕ,ψ; ∂Ωε). (32)

The first term in (32) is easily evaluated by the Gauss theorem and written as

f(u,σ,ϕ,ψ; ∂Ωε)

= πε2
[(
−ϕij(x0)Dijkl − ψk,l(x

0)
)
σkl(x

0)

+
(
ρω2ψi(x

0)− ϕij,j(x
0)
)
ui(x

0)
]
+O(ε3), (33)

where D is the compliance tensor given by

Dijkl =
1

4µ

(
− λ

λ+ µ
δijδkl + δikδjl + δilδjk

)
. (34)

To evaluate the second term in (32) using the adjoint variable method, we
derive a reciprocal relation for the quasi-periodic problem. Let u1 be a solution
of

σ1
ij(x) + ρω2u1i (x) = 0 x ∈ Ω, (35)

u1i (x+ Le1) = u1i (x)e
iβ x ∈ Γp, (36)

u1i,1(x+ Le1) = u1i,1(x)e
iβ x ∈ Γp, (37)

Outgoing radiation condition for u1i (x) as |x| → ∞, (38)

and let u2 be a solution of

σ2
ij(x) + ρω2u2i (x) = 0 x ∈ Ω, (39)

u2i (x+ Le1) = u2i (x)e
−iβ x ∈ Γp, (40)

u2i,1(x+ Le1) = u2i,1(x)e
−iβ x ∈ Γp, (41)

Outgoing radiation condition for u2i (x) as |x| → ∞, (42)

where σ1
ij = Cijklu

1
k,l and σ

2
ij = Cijklu

2
k,l (Note that the superscripted indices

here do not indicate exponential). Using the quasi-periodic conditions, outgoing
radiation condition, and Betti’s reciprocal theorem, we see that the following
reciprocal relation holds: ∫

Γ

(σ1
jiu

2
i − σ2

jiu
1
i )njdΓ = 0. (43)

Note that not only the same radiation condition but also the quasi-periodic
conditions with the phase differences of opposite sign are required.
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Now we define an adjoint variable (ũ, σ̃) which satisfies

σ̃ij(x) + ρω2ũi(x) = 0 x ∈ Ω, (44)

σ̃ij(x) + ρ′ω2ũi(x) = 0 x ∈ Ω′, (45)

ũi(x) := ũi|+(x) = ũi|−(x)− ψi(x) x ∈ Γ, (46)

σ̃ji|+(x)nj(x) = σ̃ji|−(x)nj(x) + ϕji(x)nj(x) x ∈ Γ, (47)

ũi(x+ Le1) = ũi(x)e
−iβ x ∈ Γp, (48)

ũi,1(x+ Le1) = ũi,1(x)e
−iβ x ∈ Γp, (49)

Outgoing radiation condition for ũi(x) as x2 → ±∞, (50)

and

σ̃ij(x) =

{
Cijkluk,l(x) x ∈ Ω

C ′
ijkluk,l(x) x ∈ Ω′ . (51)

Then the reciprocal relation (43) and the Betti’s reciprocal theorem for bounded
domains yield

f(δu, δσ,ϕ,ψ; Γ) = −f(δu, δσ, σ̃,−ũ; ∂Ωε). (52)

Now the second and third terms in (32) are written by the integrals around
Ωε. From the result of [28], the perturbed solutions admit the following expan-
sions:

ui(x) + δui(x) = ui(x
0) +O(ε) x ∈ Ωε, (53)

σij(x) + δσij(x) = Aijklσkl(x
0) +O(ε) x ∈ Ωε, (54)

where A is the fourth-order tensor given by the elastic tensors

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (55)

C ′
ijkl = λ′δijδkl + µ′(δikδjl + δilδjk), (56)

Eshelby’s tensor [30]

Sijkl =
1

4 (λ+ 2µ)

[
(λ− µ) δijδkl

+(λ+ 3µ) (δikδjl + δilδjk)
]
, (57)

and identity tensor Iijkl =
1
2 (δikδjl + δilδjk) as

A = C ′ : (I + S : (C ′ −C) :D)
−1

:D, (58)

with the inverse X−1 of a symmetric fourth order tensor Xijkl = aδijδkl +
b(δikδjl + δilδjk) given by

(X−1)ijkl = − a

4b(a+ b)
δijδkl +

1

4b
(δikδjl + δilδjk), (59)

and the double inner product (X : Y )ijkl = XijmnYmnkl between Xijkl and
Yijkl = cδijδkl + d(δikδjl + δilδjk), computed by

(X : Y )ijkl = 2(ac+ ad+ bc)δijδkl + 2bd(δikδjl + δilδjk). (60)
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The asymptotic expansions (53) and (54) yield

f(δu, δσ,ϕ,ψ; ∂Ωε)

=πε2
[(
ϕkl(x

0)Dklmn + ψm,n(x
0)− ϕij(x

0)D′
ijklAklmn

− ψk,l(x
0)Aklmn

)
σmn(x

0) + (ρ′ − ρ)ω2ψi(x
0)ui(x

0)
]

+O(ε3), (61)

where D′ = (C ′)−1. From (33) and (61) along with (52), we finally arrive at

δf =πε2
[
σ̃ij(x

0)
(
D′

ijkl −Dijkl

)
Aklmnσmn(x

0)

+ (ρ′ − ρ)ω2ũi(x
0)ui(x

0)

+

(
−ϕij(x0)D′

ijkl −
ψk,l(x

0) + ψl,k(x
0)

2

)
×Aklmnσmn(x

0)

+
(
−ϕij,j(x0) + ρ′ω2ψi(x

0)
)
ui(x

0)
]
+O(ε3), (62)

which gives the topological derivative

T (x) =σ̃ij(x
0)

(
D′

ijkl −Dijkl

)
Aklmnσmn(x

0)

+ (ρ′ − ρ)ω2ũi(x
0)ui(x

0)

+

(
−ϕij(x0)D′

ijkl −
ψk,l(x

0) + ψl,k(x
0)

2

)
×Aklmnσmn(x

0)

+
(
−ϕij,j(x0) + ρ′ω2ψi(x

0)
)
ui(x

0) x ∈ Ω. (63)

Similarly, we conclude that the topological derivative in Ω′ is given by

T (x) =σ̃ij(x
0)

(
Dijkl −D′

ijkl

)
A′

klmnσmn(x
0)

+ (ρ− ρ′)ω2ũi(x
0)ui(x

0)

+

(
−ϕij(x0)Dijkl −

ψk,l(x
0) + ψl,k(x

0)

2

)
×A′

klmnσmn(x
0)

+
(
−ϕij,j(x0) + ρω2ψi(x

0)
)
ui(x

0) x ∈ Ω′, (64)

where A′ is obtained by interchanging (λ, µ) and (λ′, µ′) in A. The direct
problem (9)–(15) and adjoint problem (44)–(50) are numerically solved by the
boundary element method to obtain u, σ, ũ, and σ̃ (see Appendix B).

4 Numerical examples

Here we demonstrate some examples of our topology optimisation.
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4.1 Elastic wave absorber

First we explore an optimal configuration that maximises the amount of energy
absorbed by viscoelastic inclusions embedded in a perfectly-elastic host medium,
which is called an elastic wave absorber. To this end, the objective functional
J to be maximised is chosen as the loss ratio

J =
1

Ein
Im

[∫
Γ

σij(x)ui(x)nj(x)dΓ

]
, (65)

whose maximum value 1 is attained if and only if the system absorbs all the
incident energy.

As shown in Fig. 2 (a), we defined a fixed design domain D as the rectan-
gular region D = (−0.5m, 0.5m)× (−1.0m, 1.0m). The geometrical periodicity
L is fixed at L = 1m throughout the topology optimisation. In this example,
the host matrix Ω and viscoelastic inclusion Ω′ are assumed to be steel (mass
density 7.80 × 103 kg/m3, Young’s modulus 205GPa, and Poisson’s ratio 0.30)
and epoxy resin (mass density 1.85 × 103 kg/m3, Young’s modulus 3.00GPa,
Poisson’s ratio 0.34, and phase lag 10 deg), respectively. A plane P-wave with
a frequency of 1.8 kHz is given in the upward direction perpendicular to the
array. Here the initial configuration shown in Fig. 2 (a) consists of two layers
of circular inclusions, but this choice is not necessarily the best and may affect
the performance of our topology optimisation. From Fig. 2 (c), we see that
the upper bound of J is almost realised at the 82th step (final step). This can
be observed from Fig. 2 (d) and (e) as well. For the initial configuration, we
can see little interference around the inclusions; consequently, the incident wave
is passing through the absorber with almost no reflection or absorption. Con-
versely, the optimised configuration exhibits strong interference in the structure,
resulting in efficient energy absorption.

Although our topology optimisation does not consider the robustness to
frequency perturbation, we are interested in whether the designed absorber can
maintain such a high performance when the frequency varies from the target
value of f = 1.8 kHz. To analyse the performance, we compare the designed
absorber (Fig. 2 (b)) and viscoelastic slab, which is obtained by filling the same
viscoelastic material in D. From Fig. 3, we observe that the designed absorber
attains the maximum loss ratio around the target frequency 1.8 kHz and exhibits
degradation in performance as the frequency moves away from the target value.
However, the viscoelastic slab absorbs almost 20% of the incident energy within
the spectrum, which is substantially less than that by the designed absorber.
These results indicate that the designed absorber performs well even in a wide
range of spectrum compared with conventional structures.

Although the designed structure achieves wideband performance, better
spectral properties can be expected by stacking the slab in the x2 direction
and increasing the thickness of the absorber. Here we regard the fixed design
domain D as a unit cell of the layered structure and perform the same topology
optimisation to design a triple-layered absorber as shown in Fig. 4. Further-
more, we performed a spectral analysis and plotted the results in Fig. 3. We
can see that the designed absorber has a different shape and performs slightly
better than the original absorber in the frequency range 1.4–2.2 kHz.
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Incident
P-wave

(a) Initial configuration (b) Optimised con-
figuration

(c) History of J

(d) Displacement in the initial
configuration

(e) Displacement in the initial
configuration

Figure 2: Result of the topology optimisation of the elastic wave absorber. (a)
and (b) show the initial and optimised configurations, respectively. (c) illus-
trates the history of the objective functional J in the optimisation procedure.
Also, (d) and (e) show the intensity of displacement (time-averaged amplitude
of the displacement normalised by that of the incident wave) in the initial and
optimised configurations, respectively
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Figure 3: Loss ratio for the designed elastic wave absorber (circular dots), vis-
coelastic slab (dashed line), and triple-layered elastic wave absorber shown in
Fig. 4 (b) (discrete crosses).

(a) Initial con-
figuration

(b) Initial con-
figuration

Figure 4: Result of the topology optimisation of the triple-layered elastic wave
absorber.
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4.2 Wave-mode converter

Our elastic metamaterial slabs would achieve another interesting functionality.
We recall the far-field characteristics (23) and see that the scattered S-waves
can be excited with only a plane P-wave, and vice versa. This implies that
it would be possible to realise a metamaterial slab which converts an incident
P-wave (resp. S-wave) into transmitted S-waves (resp. P-waves). We term this
metamaterial slab a wave-mode converter.

Here, we focus on the ‘P-wave to S-wave’ conversion. To realise this wave-
mode conversion, we define the objective function J so that a transmitted wave
is composed of only plane S-waves when J attains its minimum value −1 if and
only if the amplitudes of transmitted P-waves AL+,m, reflected P-waves AL−,m,
and reflected S-waves AT−,m are minimised, and the amplitudes of transmitted
S-waves AT+,m are maximised, i.e. we minimise

J =
ω2L

√
ρ

2Ein

[ ∑
m∈IL

√
λ+ 2µ

×
(
|pL+,m

2 ||AL+,m|2 + |pL−,m
2 ||AL−,m|2

)
−

∑
m∈IT

√
µ
(
|pT+,m

2 ||AT+,m|2−|pT−,m
2 ||AT−,m|2

)]
. (66)

We demonstrate a numerical example of topology optimisation of the wave-
mode converter. In this example, we use the same material constants as the
previous optimisation; however, the phase lag δ in Ω′ is changed to 0 so that
the inclusion is perfectly elastic.

We give an incident plane P-wave propagating in the upward direction per-
pendicular to the array, which is periodic along the x1 direction with L = 1.0m
as shown in Fig. 5 (a). The frequency is set to 3.8 kHz. In this setting, we
have one P-wave channel IL = {0} and three S-wave channels IT = {−1, 0, 1}.
Note that the number of the channels and the direction of each channel are
independent of the shape of the inclusions.

Fig. 5 (b) illustrates the optimised configuration, and Fig. 5 (c) shows
the history of the value of J for each optimisation step. As with the previous
optimisation, we have almost reached the lower bound J = −1 at the 64th
step (final step). This means that the optimised structure converts the incident
P-wave into S-waves propagating through the upward −1th and 1th S-wave
channels. We can confirm this from Fig. 5 (d) and (e), where we have computed
the amplitudes of each plane wave in the far fields by numerically evaluating
the integrals (21) and (22). For the initial configuration, we can observe almost
no reflection or excitation of the S-waves whereas the optimised configuration
diffracts the incident wave in the oblique directions. In addition, we have plotted
the displacement field in Fig. 6, from which we confirm that the divergence
vanishes within the top of the slab and transmitted wave has only rotational
components.

4.3 Negative refraction

We finally show that our metamaterial slab can exhibit negative refraction, i.e.
a transmitted wave propagates in an opposite horizontal direction to an incident
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Incident
P-wave

(3.8 kHz)

(a) Initial configuration (b) Optimised con-
figuration

(c) History of J

(d) Scattering amplitudes for the
initial configuration

(e) Scattering amplitudes for the
optimised configuration

Figure 5: Result of the topology optimisation of the wave-mode converter. (a)
and (b) show the initial and optimised configurations, respectively. (c) illus-
trates the history of the objective functional J in the optimisation procedure.
In (d) and (e), the red and blue arrows respectively denote the directions and
magnitudes of the scattered P- and S-waves in the far fields. The directions of
the arrows denote their directions of propagation pL±,m or pT±,m, and the length
represents their amplitudes |AL±,m| or |AT±,m| for each propagating channel m.
The magnitudes are normalised by that of the incident wave. In addition, the
red dashed lines indicate the incident P-wave
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(a) Divergence in the optimised
configuration

(b) Rotation in the optimised
configuration

Figure 6: Displacement field at t = 0 around the designed wave-mode converter
(Fig. 5 (b)). (a) and (b) show the divergence and rotation of the total displace-
ment field normalised by the amplitude of the incident wave, respectively

wave. We consider the negative refraction of a P-wave. Similar to (66), we define
the objective functional J as

J =
ω2L

√
ρ

2Ein

[ ∑
m∈IL

√
µ

×
(
|pT+,m

2 ||AT+,m|2 + |pT−,m
2 ||AT−,m|2

)
+

∑
m∈IL\{−1}

√
λ+ 2µ|pL+,m

2 ||AL+,m|2

+
∑
m∈IL

√
λ+ 2µ|pL−,m

2 ||AL−,m|2

−
√
λ+ 2µ|pL+,−1

2 ||AL+,−1|2
]
, (67)

so that the slab diffracts an incident P-wave in the upward −1th P-wave channel
without any reflection. Note that this objective function is not valid for a low
frequency range because we assume −1 ∈ IL, which is equivalent to kL > π/L.

We used the same material constants and initial configuration as the previous
optimisation and give an incident plane P-wave with a frequency of 4.8 kHz and
incident angle of 30 deg as shown in Fig. 7 (a). Then the channel indices are
IL = {−1, 0} and IT = {−1, 0, 1}.

We illustrated the optimised configuration in Fig. 7 (b) and the history
of J in Fig. 7 (c). Different from the previous two optimisations, the lower
bound J = −1 is not perfectly attained; however we can observe the negative
refraction from Fig. 7 (e) and Fig. 8 while Fig. 7 (d) indicate very weak
scattering. We note that our topology optimisation is slightly sensitive to the
initial configuration; therefore a possibility that we can find a better solution
exists.
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Incident
P-wave

(4.8 kHz)30 deg

(a) Initial configuration (b) Optimised con-
figuration

(c) History of J

(d) Scattering amplitudes for the
initial configuration

(e) Scattering amplitudes for the
optimised configuration

Figure 7: Result of the topology optimisation of the wave-mode converter. (a)
and (b) show the initial and optimised configurations, respectively. (c) illus-
trates the history of the objective functional J in the optimisation procedure.
In (d) and (e), the red and blue arrows denote respectively the directions and
magnitudes of the scattered P- and S-waves in the far fields. The directions of
the arrows denote their directions of propagation pL±,m or pT±,m, and the length
represents their amplitudes |AL±,m| or |AT±,m| for each propagating channel m.
The magnitudes are normalised by that of the incident wave. In addition, the
red dashed lines indicate the incident P-wave
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(a) Divergence in the opti-
mised configuration

(b) Rotation in the optimised
configuration

Figure 8: Displacement field at t = 0 around the designed metamaterial slab
(Fig. 7 (b)). (a) and (b) show the divergence and rotation of the total displace-
ment field normalised by the amplitude of the incident wave, respectively

5 Conclusion

This paper presented a numerical method for a topology optimisation of elastic
metamaterial slabs. Our proposed method is based on a new objective functional
that describes the far-field behaviour of scattering waves. The corresponding
topological derivative is derived and incorporated into a level-set-based topology
optimisation algorithm. Through numerical examples, we confirmed that our
topology optimisation successfully designs metamaterials that exhibit perfect
absorption, wave-mode conversion, and negative refraction.

Our topology optimisation does not consider the robustness to perturbation
of frequencies or incident angles. From a practical perspective, it must be en-
sured that the designed material possesses desired robustness, which we will
study in our future works.

A Periodic Green’s function and far-field char-
acteristics

A.1 Periodic Green’s function

To analyse the periodic scattering problem (9)–(15), we first consider Green’s
function Gp

ij satisfying

(λ+ µ)Gp
kj,ik(x,y) + µGp

ij,kk(x,y) + ρω2Gp
ij(x,y)

= −δ(x− y)δij , (68)

Gp
ij(x+ Le1,y) = Gp

ij(x,y)e
iβ , (69)

and the radiation condition, where δij is the Kronecker delta, and δ(x) is the
Dirac delta function. This Green’s function Gp

ij is called periodic Green’s func-
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tion and known to have the following representation:

Gp
ij(x,y) =

∞∑
n=−∞

Gij(x− nLe1,y)e
inβ , (70)

where Gij is the fundamental solution for the two-dimensional elastodynamics,
expressed by

Gij(x,y) =
i

4µ

[
H

(1)
0 (kT|x− y|)δij

+
1

k2T

1

∂yi∂yj

(
H

(1)
0 (kT|x− y|)−H

(1)
0 (kL|x− y|)

)]
, (71)

with the Hankel functions H
(1)
n of the first kind and order n and wavenumbers

kL = ω

√
ρ

λ+ 2µ
, (72)

kT = ω

√
ρ

µ
. (73)

The lattice sum (70) would be the simplest expression of Gp
ij but has com-

putational limitations. From (71), we see that Gij asymptotically behaves as
G(x,y) = O(|x−y|−1/2) when |x−y| tends to the infinity if Im [λ] = Im [µ] = 0.
This implies that the convergence speed of the lattice sum (70) is extremely slow;
thus we require another representation of Gp

ij whose convergence is guaranteed
and rapid.

For now, we assume that x2 − y2 ̸= 0 and consider the following Fourier
transform of the fundamental solution Gij(x,y) with respect to x1:

F1[Gij ](ξ, x2,y)

:=

∫ ∞

−∞
Gij(x,y)e

−iξx1dx1

=



i

2(λ+2µ)
√

k2
L−ξ2

dL+i (ξ)dL+j (ξ)

×eikL(−pL+
1 (ξ)y1+pL+

2 (ξ)(x2−y2))

+ i

2µ
√

k2
T−ξ2

dT+
i (ξ)dT+

j (ξ)

×eikT(−pT+
1 (ξ)y1+pT+

2 (ξ)(x2−y2)) (x2 − y2 > 0)
i

2(λ+2µ)
√

k2
L−ξ2

dL−i (ξ)dL−j (ξ)

×eikL(−pL−
1 (ξ)y1+pL−

2 (ξ)(x2−y2))

+ i

2µ
√

k2
T−ξ2

dT−
i (ξ)dT−

j (ξ)

×eikT(−pT−
1 (ξ)y1+pT−

2 (ξ)(x2−y2)) (x2 − y2 < 0)

,

(74)
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where pL±(ξ), dL±(ξ), pT±(ξ), and dT±(ξ) are defined as follows:

pL±(ξ) = dL±(ξ) =
1

kL

(
ξ

±
√
k2L − ξ2

)
, (75)

pT±(ξ) =
1

kT

(
ξ

±
√
k2T − ξ2

)
, (76)

dT±(ξ) =
1

kT

(
±
√
k2T − ξ2

−ξ

)
. (77)

Using Poisson’s summation formula, the lattice sum (70) can be converted
into the following series:

Gp
ij(x,y) =

{
Gp+

ij (x,y) (x2 − y2 > 0)

Gp−
ij (x,y) (x2 − y2 < 0)

, (78)

Gp±
ij (x,y) =

∞∑
n=−∞

Gij(x− nLe1,y)e
inβ

=
1

L

∞∑
m=−∞

eiξmx1F1[Gij ](ξm, x2,y)

=
i

2L

∞∑
m=−∞

(
FL±
ij (ξm)eikL(x−y)·pL±

m

+ FT±
ij (ξm)eikT(x−y)·pT±

m

)
, (79)

where pL±m = pL±(ξm), dL±m = dL±(ξm), pT±
m = pT±(ξm), dT±

m = dT±(ξm), and

ξm = (β + 2mπ)/L, (80)

FL±
ij (ξm) =

1

(λ+ 2µ)
√
k2L − ξ2m

dL±i (ξm)dL±j (ξm), (81)

FT±
ij (ξm) =

1

µ
√
k2T − ξ2m

dT±
i (ξm)dT±

j (ξm). (82)

The series (79) converges rapidly because of the exponential functions unless
|x2−y2| becomes zero; otherwise the summands become O(|m|−1) as |m| → ∞.
We can improve this convergence rate by using Kummer’s transformation and
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obtain

Gp
ij(x,y) =

NK∑
s=1

cs

∞∑
n=−∞

G̃ij(x− nLe1,y;
√
qs)e

inβ

+

∞∑
m=−∞

Ĝij(x,y, ξm), (83)

Ĝij(x,y, ξm) =

{
Ĝ+

ij(x,y, ξm) (x2 − y2 ≤ 0)

Ĝ−
ij(x,y, ξm) (x2 − y2 ≥ 0)

, (84)

Ĝ±
ij(x,y, ξm) =

i

2L

[
FL±
ij (ξm)eikLp

L±
m ·(x−y)

+FT±
ij (ξm)eikTpT±

m ·(x−y)

+

NK∑
s=1

(
F̃L±
ij (ξm)e−

√
qskLp̃

L±
m (

√
qs)·(x−y)

+F̃T±
ij (ξm)e−

√
qskTp̃T±

m (
√
qs)·(x−y)

)]
, (85)

where the vectors and functions with the tilde symbol are defined by replacing
(λ,µ) with (−λ/qs, −µ/qs) (correspondingly (kL, kT) with (i

√
qskL, i

√
qskT)).

We can easily show that the summands of the first series in (83) become at
worst (i.e. when |x2 − y2| = 0) O(|m|−2NK−1) as |m| → ∞ when qs > 0 and cs
solve the following linear system:

q1 q2 · · · qNK

q21 q22 · · · q2NK

...
... dots

...

qNK
1 qNK

2 · · · qNK

NK




c1
c2
...

cNK

 =


1
−1
...

(−1)NK+1

 . (86)

Thus, we determine cs by solving (86); qs > 0 are regarded as parameters. Note
that (85) would suffer from a cancellation of siginificant digits in this case and
thus require some transformations such as ez − 1 = −2iez/2 sin(iz/2). On the
other hand, the first series in (83) always converges rapidly since G̃ij(x,y) =
O(e−k|x−y|) (k > 0) as |x − y| → ∞. Note that the representation (83)–(85)
holds even if x2 − y2 = 0 though we assumed otherwise. For more details, refer
to [19].

A.2 Far-field characteristics

The periodic Green’s function expressed by (79) implies that a scattered field
can be expanded into a sum of plane P- and S-waves. This can be shown by
substituting (79) into the representation formula [31]

ui(x) = uini (x) +

∫
Γ

(
CkljmG

p
ki,l(x,y)nm(y)uj(y)

−Gp
ij(x,y)tj(y)

)
dΓy x ∈ U \ Ω, (87)

which yields the plane-wave expansion (17) and formulae (21) and (22).
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B Boundary element method

We describe the numerical solution of the periodic scattering problem (9)–(15).
We first convert it into the Burton-Miller-type boundary integral equations [32]:{[(

1

2
I +D

)
+ αN

]
u

}
i

−
{[

S − α

(
1

2
I − D∗

)]
t

}
i

= uini + αCijklu
in
k,lnj , (88)[(

1

2
I − D′

)
u

]
i

+ (S ′t)i = 0, (89)

where I is the identity operator, and S , D, D∗, and N are the integral operators
defined by

(Sϕ)i(x) =
∫
Γ

Gp
ij(x,y)ϕj(y)dΓy, (90)

(Dϕ)i(x) = −v.p.

∫
Γ

CkljmG
p
ki,l(x,y)nm(y)ϕj(y)dΓy, (91)

(D∗ϕi)(x) = v.p.

∫
Γ

CkljmG
p
ki,l(x,y)nm(x)ϕj(y)dΓy, (92)

(N ϕi)(x) = −p.f.

∫
Γ

CimpqCkljnG
p
kp,lq(x,y)nm(x)

×nn(y)ϕj(y)dΓy, (93)

and S ′ and D′ are defined by replacing (ρ, λ, µ) in S and D with (ρ′, λ′, µ′),
respectively. Further, ‘v.p.’ and ‘p.f.’ stand for Cauchy’s principal value and the
finite part of divergent integrals, respectively. The coupling parameter α ∈ C
is arbitrary if it has a non-zero imaginary part, but the best condition number
of the boundary integral equations (88) and (89) is often achieved when α =
−i/(µkT) [33].

The boundary integral equations (88) and (89) are numerically solved after
being discretised by a collocation method with piecewise constant elements,
which results in a system of linear equations with a fully populated coefficient
matrix. To reduce the computational cost of the linear algebraic operations, we
apply the H-matrix method [34] to the coefficient matrix and solve the linear
system by an accelerated LU factorisation.
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